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ABSTRACT: In this Perspective, we focus on new,
systems-centric views of structure-based drug design
(SBDD) that we believe will impact future drug discovery
research and development. We will first discuss new ways
to identify drug targets based on systems intervention
analysis, and then we will introduce emerging SBDD
methods driven by advancements in systems biology.

1. INTRODUCTION

Structure-based drug design (SBDD) methods have rapidly
progressed in parallel with advances in molecular biology,
structural biology, computational chemistry and biology, and
computer science. SBDD techniques provide powerful tools for
identifying hit molecules as starting points for medicinal
chemistry. In particular, molecular docking methods based on
three-dimensional biological macromolecule structures and
compound libraries (target-based virtual screening) have played
a major role in the development of therapeutically important
small molecules. SBDD methodologies and progress have been
summarized in many reviews.1−6 Briefly, it is well recognized
that SBDD can reduce drug research and development (R&D)
time and cost.6,7 Though issues such as the high false positive
rate of virtual screening, the difficulty of considering target
flexibility in docking, and the inaccuracy of scoring functions for
estimating target−ligand binding free energy still represent
major challenges to current SBDD methodologies, SBDD is
already an indispensable tool that has advanced drug R&D.
Many of the drugs on market or in clinical trials were
influenced, at least partially, by SBDD.8,9

Entering the 21st century, with the rapid development of
“omics” techniques, many potential drug targets were identified,
and a golden era of target-based drug discovery was expected to
occur. Unfortunately, the cost of drug R&D has steadily
increased, while investment returns have decreased. The annual
number of FDA-approved drugs has not increased, and the
number of new molecular entities (NMEs) is on the
decline.10,11 Most potential compounds fail in clinical trials
due to a lack of efficacy or adverse side effects.12 It appears that
the modern pharmaceutical industry is bottlenecked by NME
production. Diseases and drug action mechanisms are far more
complex than previously assumed. Systems-based drug
discovery approaches provide a possible solution to break this
bottleneck. Systems biology focuses on the systems-level study
of biological molecules and their interactions.13 Utilizing tools

such as biological network modeling and large-scale data
analysis, systems biology has provided deep insights into how
biological functions emerge from the complex interac-
tomes.14,15 Moreover, systems biology enables rationalization
and prediction of drug effects and side effects; thus it holds
promise as a next-generation drug discovery approach.16−18

Successful systems-level regulation for disease intervention
requires new methods for biological network simulations and
control strategy predictions, which further requires new
developments in SBDD.
In this Perspective, we provide a brief overview of SBDD

directions in a systems-centric view that we believe to be
important for future drug R&D. The first part evaluates the
identification of new targets to broaden drug discovery scope,
with an emphasis on systems-centric intervention. The second
part covers new directions for SBDD methods that are driven
by systems biology. Figure 1 shows some of the directions we
believe important for SBDD in the systems biology era and
their relationships with systems-based drug discovery.

2. SYSTEMS BIOLOGY AND DRUG TARGET
IDENTIFICATION

Complex diseases such as cancer, diabetes, and cardiovascular
diseases present significant challenges for drug discovery.
Diseases of complex etiology are difficult to treat effectively
by targeting a single site, because of the divergent or redundant
structures in underlying disease networks.19 Drugs with high
specificity toward a particular target may still have unexpected
adverse effects, as modulation of the target activity can have
repercussions on distant parts of the biological network. On the
other hand, highly selective drugs may show lower efficacy due
to the inherent robustness of biological systems. For anticancer
agents (as well as antibiotics and antiviral agents), similarities
between host and “pathogen” biochemistry, as well as the
tendency of pathogens to generate resistant mutations, can also
be a limitation. Systems biology (systems)-based drug discovery
provides new hope to address these problems.20−22

The complex interactions of biological macromolecules are
exemplified by the increasingly refined mapping of broad
biological networks including protein−protein interaction
(PPI),23 metabolic,24 and signaling25 networks. Systems-based
drug design can take advantage of these networks. Considering
a drug whose binding induces structural changes in its target as
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well as functional changes, this structural change could spread
past the immediate binding partners of the target, through the
complex PPI interactome in human cells, and exhibit long-
range effects and side effects. Drugs utilizing this kind of
behavior are named allo-network drugs.26−28

In the following sections, we shall discuss two key areas of
systems-based target identification (section 2.1). The first is
network state changes with respect to diseases. Using the
human inflammatory arachidonic acid metabolic network as an
example, we look at diseases as an undesirable network state
and reframe the goal of drug therapy toward shifting the
network back to a normal state.29,30 The second area is
signaling dynamics and disease. Typical signal transduction
pathways, such as p53 and NFκB, output signals with different
dynamic patterns that may lead to diseases under certain
circumstances.
Next we will discuss new directions for SBDD and the

development of systems-based drug discovery studies. From a
network point of view, up-regulating target activity is equally
important as down-regulating its activity, which may be best
realized using allosteric regulators. Compared to normal
orthosteric drugs, allosteric drugs provide many benefits
(section 2.2). Alteration of network dynamics can also be
achieved by disturbing expression levels of related targets
(section 2.3). Lastly, in addition to drug binding affinity,
binding kinetics are also important for determining drug
efficacy (section in 2.4).
2.1. Systems-Based Drug Discovery. The central issue of

network-based drug discovery is the selection of drug targets.
Broadly speaking, this requires a network-level characterization
of disease and a clear understanding of normal and diseased
network states. These networks are dynamic models that
respond to perturbations through series of regulation and
feedback. Understanding these connections and dynamics
forms the foundation of systems-based drug design.
2.1.1. Disease as a Network State. To identify optimal

intervention sites as possible drug targets in disease-related

networks, a search algorithm is needed. For example, our
laboratory developed an algorithm to investigate anti-
inflammatory drugs targeting arachidonic acid metabolic
pathways.29 Based on the established ordinary differential
equation model, we proposed a Monte Carlo simulated
annealing-based search algorithm, MTOI (“Multiple Target
Optimal Intervention”), for target identification. Using this
algorithm, we predicted potential target combinations with high

Figure 1. Systems-based drug intervention and new directions for SBDD. Top: illustration of disease intervention at the systems level to regulate
disease-related network state and dynamics. Bottom: list of important new directions for SBDD. Abbreviations used: IDPs, intrinsically disordered
proteins; PPIs, protein−protein interactions.

Figure 2. MTOI algorithm and its application in the human
arachidonic acid metabolic network. (A) Illustration of MTOI,
which uses a Monte Carlo simulated annealing-based search algorithm
to identify key targets and optimal intervention solutions. (B) A
simplified human arachidonic acid metabolic network. Concentrations
of species in orange rectangles need to be reduced, while those of
PGI2 and TXA2 need to be balanced to reduce side effects. One
solution found by MTOI is the simultaneous inhibition of COX-2/
COX-1 and LTA4H. Adapted from ref 29.
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efficacy and fewer side effects (Figure 2).30 Due to biological
redundancy in the networks, multiple intervention sites are
often required. This demonstrates the advantage of a systems-
based drug discovery approach, in which the effects of drug
combinations could be predicted and rationalized. By modeling
drug combination outcomes in all the possible three-node
enzymatic networks, we concluded that synergistic or
antagonistic drug combinations depend on network topology.31

These findings provide useful hints for developing new
combination drugs.
Conversely, drug combinations can serve as a powerful

perturbation approach that can be used to elucidate biological
interaction networks.32,33 The study of drug combinations
within a network context in both directions will certainly
contribute to our understanding of biological complexity and
help identify optimal intervention strategies.
2.1.2. Modulating Network Dynamics. Biological networks

exhibit interesting dynamic behaviors, such as bistability and
oscillation, through carefully tuned regulatory structures.34

Many of these dynamic behaviors are essential for biological
functions. For example, the regulatory network that governs the
DNA damage-induced apoptotic pathway contains a bifurcation
point where the cells will either arrest growth or proceed into
apoptosis. Proteins associated with these bifurcation points
were found to correspond with high-frequency oncogenic
mutations.35 Disrupting the normal oscillatory dynamics of
circadian clocks can cause circadian disorders. It has been
hypothesized that changes in the bistable signal−response
dynamics could be related to tumorigenesis.36 With increasing
network dynamic details being uncovered, rational design of
dynamics-modulating drugs may be feasible. Using drugs to
modulate network dynamic properties provides an attractive
solution to potentially treat complex diseases like cancer or
circadian disorders.
A particularly interesting property of signaling networks is

their ability to respond to different signals with different
signaling molecule dynamics. In mammalian systems, the
transcription factors p53 and NF-κB are two notable examples
of proteins with different dynamic behavior responses.37 They
are both important signaling molecules related to diseases like
cancer, and they are attractive drug targets.38,39 In a notable
study by Behar et al., signaling dynamics, rather than signaling
molecules, were theorized to be a potential target for
pharmaceutical intervention.40 The researchers theorized that
modulating the signaling dynamics would provide a way to
selectively block unwanted responses to specific signals while
leaving responses to other signals intact. This hypothesis was
experimentally tested using the TNF-signaling pathway by
selectively targeting one signal−response relationship, proving
that this therapeutic paradigm was possible.
Network-based drug discovery presents challenges and

opportunities for next-generation drug discovery. A number
of pharmaceutical companies have been founded on the basis of
exploiting this opportunity and have produced interesting,
novel solutions to complex diseases such as Charcot-Marie-
Tooth disease type 1A.41 The key to successful network-based
drug design lies in large-scale quantitative studies of biological
systems that provide a basis for measuring and predicting drug-
induced responses. Advances in high-throughput phenotyping
techniques and large-scale computational modeling have
opened the door for a network era of drug discovery.
2.2. Allosteric Binding Sites as Drug Targets.

Compared to conventional orthosteric drugs for specific

protein targets, allosteric drugs have several advantages,42

including fewer or reduced side effects and different regulation
mechanisms. Figure 3 shows how allosteric drugs work.
Notably, allosteric drugs can increase activity of the target,43

such as enzyme catalysis rate or substrate binding strength,
which is difficult to achieve with orthosteric drugs. For cases
where orthosteric sites are not suitable for small-molecule drug
design, such as large PPI interfaces,44 allosteric drugs can be
developed as a better alternative. One successful example is
allosteric inhibitors of lymphocyte function-associated antigen-
1 (LFA-1).44 The natural compound naringenin was shown to
inhibit the TGF-β ligand−receptor interaction. Molecular
dynamics simulations revealed the allosteric mechanism of
how naringenin disrupts the PPI.45

Unfortunately, in most cases, we cannot identify where
potential allosteric sites might be located or how they might
regulate the target activity. Most known allosteric-regulating
molecules were discovered by high-throughput experimental
screening.46,47 The first step for rational allosteric drug design is
to identify allosteric binding sites. While all non-fibrous
proteins have potential allosteric sites,48 only 907 allosteric
site-modulator structural complexes have been collected in the
AlloSteric Database.49 The MutInf method50 and support-
vector machine (SVM) predictions51 have been developed to
identify allosteric hot spots in proteins. The purpose of
allosteric site prediction is to identify pockets that are suitable
for small-molecule binding. A number of programs can be used
for this purpose, including CAVITY.52 Using this strategy, Miao
et al. performed long-time-scale, accelerated molecular
dynamics simulations on human M2 muscarinic receptor, an
important class A (rhodopsin-like) GPCR, and identified seven
potential allosteric sites53 based on FTMAP54 analysis. As
molecular dynamic simulations are expensive and may not
capture all conformational changes within relatively short-time-
scale, more efficient coarse-grained models can be used. We
developed an allosteric site prediction method using a two-state
Go̅ model.55 Based on the concept that allostery is a
conformational shift process,48,56 we constructed a two-state
conformational ensemble biased for a single protein state and
then added perturbations to potential allosteric binding sites
predicted by CAVITY.52 If these perturbations caused
population redistribution, the site was designated a potential
allosteric site. Allosteric inhibitors and activators for Escherichia
coli D-3-phosphoglycerate dehydrogenase were successfully
discovered on the basis of the predicted sites.57 Normal-
mode analysis is another widely used coarse-grained method
that has been applied to predict allosteric sites. Panjkovich et al.
compiled a non-redundant test set of proteins with known
allosteric sites and performed normal-mode analysis on them.
They observed significant changes in protein flexibility upon
allosteric ligand binding in 70% of sites.58 In another study they

Figure 3. Schematic diagram of how allosteric drugs work. When
drugs bind to the allosteric sites, the effects spread to orthosteric sites
through structural or dynamic changes, resulting in activity
modulation.
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used LIGSITEcsc59 to detect potential binding sites and then
added an octahedron to represent a simplified ligand into each
site. If the protein flexibility changed significantly, this site was
designated a potential allosteric site. The PARS web server was
built on the basis of this method.60 Huang et al. developed
another Web server, Allosite,61 which uses the FPocket
algorithm62 and an SVM algorithm to predict allosteric sites.
Allosteric site prediction methods that can efficiently

consider both long-distance effects and local detailed
interactions are needed. As mentioned before, drug binding
induces structural and dynamic property changes in its target.
This effect could spread beyond the primary target binding
partners and throughout the complex interactome, exhibiting
long-range effects and producing side effects. Utilizing this
effect could provide new solutions for designing drugs directed
at targets without suitable orthosteric drug binding sites or at
proteins that are networked to targets lacking structural
information.
Another promising drug binding target is intrinsically

disordered proteins (IDPs). IDPs exist as dynamic conforma-
tional ensembles. This important and common proteins class is
found in all kingdoms of life. A large number of cell signaling
proteins and transcription factors are IDPs or possess IDP
domains.63 Many IDPs are associated with human diseases64

and could serve as potential drug design targets. From a
network perspective, IDPs are often central players in PPI
networks.65,66 Acting as hubs that have multiple binding
partners in interactomes, they could serve as promising drug
targets for diseases like cancer.14,67 IDPs are also suitable for
use as allosteric proteins,68 and some have shown allosteric
effects on signaling.68 Drug design targeting IDPs is difficult,
and few examples have been reported. One example is the
development of inhibitors that target the oncoprotein c-Myc
IDP domain, discovered by experimental screening.69,70

Although it is difficult to design drugs targeting IDPs due to
limited structural information, the study by Jin et al. provided
insights into targeting c-Myc370−409 that may be extrapolated to
rationally design allosteric drugs targeting IDPs in the future.71

2.3. Modulating Drug Target Gene Expression. Target-
based drug design has been the dominant paradigm for modern
drug discovery. The first hint of a potential target may come
from RNA and/or protein expression studies on target tissues
or from comparison of diseased versus healthy tissues.72 Target-
based approaches can effectively develop novel treatments for
validated targets in a rational way. Drugs are developed to
interact with drug targets, directly modulating their activities or
functions. However, drugs can also be developed to act upon
drug target expression and modulate their activity by
influencing the target molecule quantity in the cell. These
drugs are referred to as target expression modulators (TEMs)
in this Perspective. TEMs provide a more direct and effective
way to treat diseases by influencing the amount of target
protein rather than modulating its activity after it has been
expressed, particularly for up-regulation. Considering that many
proteins lack suitable binding sites for drug-like molecules and
that expanding computational drug discovery to PPI disruption
has proven to be a formidable challenge,73 TEMs present a
prominent advantage by providing a means to indirectly target
a protein through targeting biomolecules that influence
transcription or post-transcriptional processes.
Compounds that could directly affect transcription or post-

transcriptional processes include, but are not limited to, the
following classes: (1) small molecules that directly bind cis-

regulatory elements on or near gene promoter sequences;74−76

(2) small molecules that interfere with the transcription
apparatus, such as transcription factors or transcription
products, by affecting mRNA stability;77−79 (3) small molecules
that epigenetically regulate gene expression by influencing
DNA methylation, histones modification, and micro-RNA
transcription;80,81 and (4) small molecules that target the
proteostasis system to increase or decrease the total protein
concentration.82,83 Some small molecules, such as genistein and
vanillin, have been shown to inhibit Polo-like kinase 1 (Plk1)
expression,84 but their detailed mechanisms remain unknown.
It has been theorized that they might down-regulate Plk1
expression by influencing DNA damage repair systems.
Developing SBDD methods to design TEMs is a promising
direction for future drug research, as gene expression and
protein degradation are important parts of biological networks.

2.4. The Influence of Drug Binding Kinetics. Drug
binding kinetics plays a major role in determining drug efficacy
in many systems.85−89 The protein−ligand binding energy
landscape may be influenced by binding kinetics.90 Particularly,
a drug’s residence time on its target is frequently found to
correlate with efficacy, stressing the importance of designing
slow-dissociating or even covalently binding drugs.85,86,91 On
the other hand, association kinetics are also important for drug
action.87,92 These results advocate the consideration of binding
kinetics as an important factor in the drug design process.
We performed a comprehensive computational analysis of

drug binding kinetics on various pharmacological situations
including enzyme inhibition, receptor binding, multi-target
drug targeting, signal transduction pathways, and metabolic
networks.93 We demonstrated that fast-associating drugs show
better enzyme inhibitory effects, earlier and higher receptor
occupancy peaks, and better multi-target performances, while
slow-dissociating drugs show prolonged receptor occupancy,
consistent with the literature.85,86,91 Different situations
produce slightly different kinetics−efficacy relationships, and
each must be considered separately. On the systems level,
binding kinetics can change the overall effect of drugs and affect
signaling dynamics (Figure 4). The drug binding kinetic effects
also depend on network topology and where the target is
located in the network. For successful drug discovery, both
molecular binding kinetics and systems-level requirements
should be considered.
As the importance of the kinetic parameters on drug efficacy

became more apparent, the push toward rational design of
binding kinetics gained momentum. Experimental and
computational studies have linked the relationship between
target structure and binding kinetics in several systems.94−97 Bai
et al. computationally characterized the binding free energy
landscape of Huperzine A to acetylcholinesterase and accurately
predicted the binding kinetic constants between the two.94

Schneider et al. conducted a structure−kinetic relationship
study on the CDK8/CycC system and identified key binding
kinetic structural determinants in a series of compounds.97 PPI
kinetics have also been studied98 due to their importance in
network states and dynamics. These studies serve as a basis for
structure-based binding kinetics design, which may greatly
enhance our ability to specifically tune network-level responses
of drugs.
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3. NEW DIRECTIONS FOR SBDD IN THE SYSTEMS
BIOLOGY ERA

As mentioned in the Introduction, systems-based drug
discovery provides potential solutions for treating complex
diseases and developing NME drugs. Systems-level regulation
of disease calls for new developments in SBDD. Here we
discuss several advancements that we believe will be important
for future drug discovery.
3.1. De Novo Drug Design. The application of docking-

based virtual screening (VS) using a protein−ligand docking
method has boomed in the past two decades. A notable
weakness of VS is that the identified hits are limited to available
compounds that cover only a fraction of chemical and drug
space. Compared to VS, computational de novo drug design can
develop novel molecular entities without structural limitations
and highly efficient scaffolds with the required pharmacological
profiles. Considering the immensity of drug-like chemical space,
de novo design is theoretically ideal for designing drug
candidates, especially to meet the potential larger drug space
requirement for systems-based drug design. A number of de
novo drug design programs have been developed in the past two
decades. The most frequently used programs include AlleGrow,
BOMB, LeapFrog, Ligbuilder, Ludi, MCSS, and SPROUT.99

Despite the advantages, de novo drug design methods have
not been widely adopted by medicinal chemists in routine drug
discovery. Only a few hits have been discovered using de novo
drug design programs compared with the success of VS
programs. According to Kutchukian and Shakhnovich99 and our
own survey, the average number of experimental validation

studies using de novo design programs between 2005 and 2013
was less than 10 annually. The lack of popularity may be related
to the fact that de novo design is not a high-throughput
approach like high-throughput screening (HTS) or VS.
Synthesis of de novo designed compounds is often labor-
intensive and time-consuming due to the involvement of
numerous scaffolds. Usually, de novo designed molecules are
difficult to synthesize unless chemical synthesis methods are
considered in the design process. Therefore, a practical de novo
drug design program has to design drug candidates with high
synthesis accessibility and high success rates (i.e., fewer false
positives). This is more demanding than VS, as the compounds
selected can normally be purchased in bulk for downstream
testing.
We developed a multi-purpose program called LigBuild-

er100,101 based on our previously developed program RASSE102

for structure-based de novo drug design. In the current release,
version 2.0, the synthesizability of designed compounds can be
analyzed in real time with an embedded chemical reaction
database and a retrosynthesis analyzer. A cavity detection
procedure is implemented to detect and shape potential ligand
binding sites in protein targets and estimate their ligandability
and druggability. Multiple evaluation criteria were implemented
to improve the design success rate. One representative example
is the design and optimization of Cyclophilin A inhibitors using
LigBuilder 2.0. Using a single design round, a novel cyclosporin
A inhibitor was designed and shown experimentally to have
greater potency than the positive control.103 This successful
example and others104−108 have verified the effectiveness of
LigBuilder.
De novo drug design methods can be applied to optimize hits

from fragment-based screening.109−112 Fragment screening
focuses on small moiety-like compounds that bind to various
regions inside the target binding site; a scaffold is then
developed to connect these multiple, independent fragments
into a single compound. One of the primary advantages of
fragment-based screening is that fragment hits generally exhibit
strong binding with respect to their size, and their subsequent
optimization should lead to compounds with better pharma-
cokinetic properties compared with HTS or VS hits.112 In
summary, de novo drug design methodology is an ideal and
important branch of SBDD; however, it needs further
improvement before it can be practically and popularly applied.
The main directions for the improvement include designing
compounds with high probability for chemical synthesis and
designing compounds with high success rates to overcome low-
throughput issues.

3.2. Multi-target Drug Design. Single-target drugs are
often less effective in controlling complex diseases with multiple
pathogenic factors, such as diabetes, inflammation, cancer, and
central nervous system disorders.113−115 Biological network
analysis generally provides multiple-target control solutions,
and single-target solutions are rare. Combination therapy or
multi-target therapy is necessary to effectively treat these
diseases.
Combination drugs, defined as a concerted pharmacological

intervention using several compounds that interact with
multiple targets, have increasingly been used to treat many
diseases, including cancer, inflammation, type 2 diabetes, and
AIDS.19,116−118 Multicomponent mixtures extracted from
natural products have historically been used in traditional
medicine, referred to as “ethnopharmacology”. Network
simulations and network pharmacology have been used

Figure 4. Drugs with different binding kinetics can induce different
modulations in signaling dynamics. (A) The TNFα-induced NF-κB
signaling pathway. When TNFα is used to stimulate the cells, NF-κB is
shuttled into and out of the nucleus, resulting in oscillatory nuclear
NF-κB concentrations. (B) Different TNFα inhibitors demonstrate
different NF-κB nuclear shuttling dynamics based on their drug
kinetics. Adapted from ref 93. Abbreviations used: TNFα, tumor
necrosis α; IKKK, IκB kinase kinase; IKKK-p, phosphorylated IKKK;
IKK, IκB kinase; IKK-p, phosphorylated IKK; IκB, inhibitor of κB; NF-
κB, nuclear factor κ-light-chain-enhancer of activated B cells.
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successfully to understand the effects of traditional Chinese
medicine.119−121 Combination drugs present several potential
problems, including possible drug−drug interactions, poor
patient compliance, especially in treating asymptomatic diseases
like hypertension, and different pharmacokinetics/pharmacody-
namics properties for each component, that make the drug
combination outcome hard to control.122

Multi-target drugs, which are able to interact with several
drug targets simultaneously, lead to new and more effective
medications for a variety of complex diseases, despite some
having relatively weaker activities for their respective targets.
Although the discovery process for multi-target drugs is more
complicated in the SBDD design and optimization stages due
to the increased constraints of multiple targets, the risks and
costs for clinic trials are similar to those of traditional single-
target drug development; as only one drug is used, problems
caused by drug combination can be avoided. Dual-function
inhibitors have been found to remain active across broader
concentration ranges than combination drugs.29 In recent years,
methods for multi-target ligand discovery such as linker strategy
and framework combination have been developed.122,123 Cross
(sequential) virtual screening is also a commonly used
method.124 We have used sequential screening to find dual-
function inhibitors of 5-LOX and mPGES-1,125 and a
framework combination strategy to design novel dual-function
inhibitors of COX-2 and LTA4H.

126 We also developed a
common pharmacophore model-based cross screening method
and successfully used it to find highly potent dual-target
inhibitors for LTA4H and PLA2.127

The framework approach is based on the integration of
multiple compounds through the fusion of common or similar
sub-structures.122,123 The combined molecules resulting from
this approach are usually much smaller than two distinct
structures directly linked with a flexible chain; however, their
ligand efficiencies are usually lower than those of general
preclinical compounds, which may lead to poor oral
pharmacokinetics. For cross screening, the chance of success
is generally low, especially for unrelated targets with distinct
binding sites. Therefore, it is critical for multi-target
compounds to be “highly integrated” in order to make the
most of each component group between both targets. A general
strategy for multi-target rational drug design against dissimilar
targets needs to be developed. We recently expanded our de
novo drug design program LigBuilder into a multi-target design
program, LigBuilder 3. We enabled the de novo design and
molecular optimization algorithm to handle multiple targets (to
be published). We designed a multi-target inhibitor from
scratch, considering multiple interactions for each component
group. This de novo design approach is expected to produce
high ligand efficiency, which is critical for multi-target drugs.
Multi-target lead optimization is also implemented in
LigBuilder 3, which could help researchers to find potential
multi-target optimization solutions. Besides the multi-target
growing strategy (Figure 5), an “ensemble linking” strategy is
implemented to promote “fragment linking” algorithm
efficiency in both fragment-based and multi-target drug design.
This is particularly helpful for high-efficiency recombination of
known inhibitors and framework combinations. The LigBuilder
3 program was experimentally validated by designing dual-
target inhibitors for COX-2 and LTA4H,128 providing a
solution for rational design and optimization of highly
integrated multi-target drugs, especially for proteins with
dissimilar binding pockets (Figure 6).

As the available chemical space for multi-target ligands is
much smaller than for single-target ligands, de novo design for
multi-target drugs might be a better choice. Optimization of
multi-target leads is far more complicated than that of single-
target leads because the “optimization landscape” is no longer a
simple stepwise “group-activity” profile. The requirement for
binding affinity balance across multiple binding targets will
significantly reduce the available chemical space in the lead
structure. As a result, stepwise optimization in multi-target
design frequently refines to local, rather than global, minima.
The increased dimensions of the “optimization landscape”
make the stepwise strategy less efficient, and more extensive
global structure sampling is necessary. This is difficult to
achieve manually but is performed automatically by Ligbuilder
3. A possible drawback of multi-target drugs is that developing
drugs for multiple targets is intrinsically more challenging than
developing them for single targets, which will in most cases
further diminish the rate of optimized NME production.

Figure 5. Schematic diagram of the Ligbuilder 3 single-target (left)
and multi-target (right) growing algorithm. The fragments grown in
each step are colored in red.

Figure 6. A general multi-target rational drug design strategy for
dissimilar targets. In the first step, the multi-target seeds were
experimentally identified by focused fragment library screening.
Subsequently, multi-target de novo ligand design with an iterative
fragment-growing strategy was used to evolve the fragment seeds. As a
proof-of-concept study, a promising cyclooxygenase-2 and leukotriene
A4 hydrolase dual-target inhibitor was developed. Adapted from ref
128.
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3.3. Repositioning Drug Analogues. Drug repositioning
is an attractive strategy for developing new therapeutic
purposes for existing drugs. This is supported theoretically
because drugs often interact with multiple targets.129−131 Since
the repositioned drug has already passed a significant number
of toxicity and other clinical tests, its safety is known and the
risk of failure due to adverse toxicology is reduced. Repurposed
drugs can bypass much of the early R&D costs and time needed
before bringing the drug to market. Finding new uses for
existing drugs is a proven shortcut between the laboratory and
the clinic.
The idea of drug repositioning is not new. It has been used

since the early 1990s, mostly as a serendipitous process. In
recent years, as the value of drug repositioning has become
evident and with the advancements of systems biology,
researchers have developed new pharmacological and computa-
tional tools to make the process more systematic and to
maximize the drug’s potential.132−135 A number of successful
applications of drug repositioning have been reported.134

While the advantages of drug repositioning are apparent, it
faces some challenges due to intellectual property issues
surrounding the original drug. These issues can be complex,
and it may not always make sense to take a repositioned drug to
market from a commercial point of view. About 9000 off-patent
drugs are suitable for repositioning, but only 40% of them are
available to researchers.136 Although a comprehensive clinical
drug library screen could be established, the yield of
repositioned drugs would be limited due to drug availability.
Here, we propose the concept of “repositioning drug

analogues” by finding new potential indications for drug
analogues, such as drug precursors or optical isomers, targeted
at alternate diseases. Since drug analogues have structures very
similar to those of marketed drugs, they have high potential to
become drugs themselves. The number of drug analogues is
much larger than that of existing drugs, making them an
abundant resource for developing new leads in different targets.
Drug analogues are often ignored because they show no or
reduced potency against the original disease, but this may not
hold true for new diseases.
3.4. Designing Drugs To Target Protein−Protein

Interactions (PPIs). PPIs form signaling nodes and hubs
that transmit pathophysiological cues along molecular networks
to achieve an integrated biological output, thereby promoting
pathogenesis and/or disease progression. Pathway perturbation,
through the disruption of PPIs, offers a novel and effective
strategy for curtailing the transmission of pathogenic signals.137

Inhibition of PPIs with small molecules has emerged as a new
way to modulate the activity of proteins and generate potential
new drugs against this tremendous reservoir of potential
targets.44 Successesespecially the marketed cardiovascular
drug Titrobifan, a glycoprotein IIb/IIIa inhibitor, and anti-HIV
drug Maraviroc, an inhibitor of the CCR5−gp120 interaction
highlighted the potential of the PPI targeting approaches.137

The remarkable differences between the traditional ligand−
protein format and PPI make the discovery and design of PPI
inhibitors particularly challenging.138 Lack of appropriate
technologies to tackle the shallow protein−protein interface
has hampered SBDD drug discovery research in this area.
Computational strategies to address these challenges include
three major avenues: (a) Use the structures of known PPI
inhibitors to predict future PPI inhibitors.138 (b) Use SBDD to
identify a fragment, usually a peptide, that is critical for PPI,
providing a basis for further rational optimization. Many potent

inhibitors have been discovered by engineering small molecules
or peptides based on or mimicking the natural structure of
binding peptides.137 (c) Identify “hot spots” on PPI surfaces
that could bind small fragments, and design linkers to connect
the fragments.139 Fragment-based or de novo design methods
are useful in this case. These approaches inevitably generate
ligands of high molecular weight and lipophilicity. Recent
surveys of the existing PPI inhibitors concluded that the PPI
chemical space is non-Ro5-compliant. Furthermore, PPI
inhibitors have lower ligand efficiency than the traditional
inhibitors.138 Several existing potential lead molecules present
poor binding efficiency index (BEI) and surface efficiency index
(SEI) values. Associated with these poor physicochemical
properties are high attrition rate of PPI compounds in
preclinical discovery research and the lack of adequate
pharmacokinetic and safety profiles in clinical development.
However, despite having an unsatisfactory BEI/SEI value,
Navitoclax presents a pharmacokinetics profile for oral dosing
and does well in phase IIa trials. This case indicates that new
standards are required to evaluate the delivery properties of PPI
inhibitors, and a new delivery system is also needed.140

As orthosteric sites of PPIs are often found not suitable for
small-molecule drug design, allosteric modulation is then
expected to be more effective and specific for PPI targets.
Successful examples are allosteric inhibitors of LFA-1,141 nitric
oxide synthase enzymes,142 and nerve-growth factor.143

Methods mentioned in section 2.2 can be used to predict the
possible allosteric binding site of PPIs for SBDD. PPIs usually
have dynamic structures. Thermal motions may make transient
pockets suitable for small-molecule binding. Only using static
structures of PPIs may not be enough to capture the dynamic
binding sites. Though some pocket-finding software predicted
the pockets well on both static and free structures,144 molecular
dynamics simulation is useful in revealing the potential
druggable allosteric pockets.

4. SUMMARY
In summary, we have given a brief overview of the progress of
some current structure-based drug design methods and offered
our outlook on new and developing SBDD directions that may
help to circumvent the current bottleneck in drug research. The
most promising directions are related to systems-centric views
of drug design, which are critically important for treating
complex diseases. Systems-based drug design transcends single-
target drug design, which is often hampered by adverse side
effects and low in vivo efficacy. Systems-based drug design itself
faces challenges, including how to develop reliable system
analysis methods that currently lack network integrity and
quantitative data,145,146 how to define normal and diseased
network states, and how to combine human and pathogen or
parasite networks. The development of systems-based drug
design also creates a demand for novel SBDD methods,
including multi-target drug design, binding kinetics design,
allosteric site targeting, IDP targeting, target gene expression
modulation, and drug or drug analogue repositioning. These
new dimensions for SBDD are now in their early stages, and
significant attention should be paid to the progress of their
theories and applications.
In this Perspective we focused on methods for designing

small-molecule drugs; however, alternative ways to regulate
network states or dynamics include designing PPI-regulating
proteins,147−150 and more attention should be paid to nucleic
acid-based therapeutics (antisense, RNAi, microRNA, and gene
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repair-based strategies). Additionally, the SDBB methods
discussed here can be used in chemical biology to investigate
macromolecule−small molecule interaction mechanisms151 and
in synthetic biology to design artificial molecular parts for
functional modules.152−154
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